LEADER TIME SRL

PRODUCT SPECIFICATION

20*2 Characters COB LCD MODULE MODEL: EX0248 Ver:1.0

< \diamond > Finally Specification

	CUSTOMER'S	S APPROVAL
CUSTOMER :		
SIG	NATURE:	DATE:

APPROVED	PM	PD	PREPARED
BY	REVIEWD	REVIEWD	Ву

Prepared By: LEADER TIME SRL VIA MONS. PROSDOCIMI, 27 36042 BREGANZE (VI)

• This specification is subject to change without notice. Please contact LT or its representative before designing your product based on this specification.

Revision Status

Version	Revise Date	Page	Content	Modified By
Ver. 1.0	2017.10.26		First Issued	

Table of Contents

No. Contents	Page
1. FEATURES	4
2. MECHANICAL SPECIFICATIONS	4
3. ELECTRICAL SPECIFICATIONS	4
4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM	6
5. TIMING CHARACTERISTICS	7
6.COMMAND LIST	10
7.CHARACTER GENERATOR ROM	11
8. POLAROID	12
9. QUALITY SPECIFICATIONS	13
10. RELIABILITY	19
11. HANDLING PRECAUTION	20
12. OUTLINE DIMENSION	21

1. Features

The features of LCD are showed as follows

- * Drive IC
- * Display mode : FSTN/Transflective/Positive : UCI7066-01(English and Japanese)
- * Display format
- : 20*2Characters * Interface Input Data : 8 Bit or 4Bit MPU
- * Driving Method
- : 1/16Duty, 1/5 Bias * Viewing Direction
 - : 6 O'clock
- * Backlight
- : 3 LED/Side White
- *Sample NO.
- : C2002A5FSW1B-B9_02/20171016

2. MECHANICAL SPECIFICATIONS

Item	Specification	Unit
Module Size	116(W) x 37(H) x 14MAX(D)	mm
Viewing Area	85(H) x 19.8(V)	mm
Activity Display Area	73.5(H) x 11.5(V)	mm
Character Font	5 x 8 Dots	-
Character Size	3.2(H) x5.55(V)	mm
Character Pitch	3.7(H) x 5.95(V)	mm
Dot Size	0.6(H) x 0.65(V)	mm

3. ELECTRICAL SPECIFICATIONS

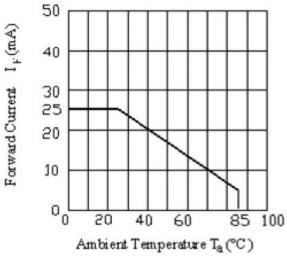
3-1 ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min	Max	Unit
Supply Voltage For Logic	Vdd – Vss	-0.3	7.0	V
Supply Voltage For LCD Drive	V_{OP} = VDD – V0	Vdd - 10	Vdd +0.3	V
Input Voltage	Vin	-0.3	Vdd+0.3	V
Operating Temp.	Тор	0	+50	°C
Storage Temp.	Tst	-10	+60	°C

*. NOTE: The response time will be extremely slow when the operating temperature is around -10° C, and the back ground will become darker at high temperature operating.

3-2 ELECTRICAL CHARACTERISTICS

ltem		Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic supply Voltage		Vdd – Vss		4.5	5.0	5.5	V
LCD Dri	LCD Drive		Ta = 25 °C	4.1	4.4	4.7	V
Input Voltage	"H" Level	V _{IH}	$V_{DD}=5.0V \pm 10\%$	0.7 Vdd	-	Vdd	V
	"L" Level	V _{IL}		-0.3	-	0.55	V
Frame Frequency		f _{FLM}		-	78.1	-	Hz
Current Cons	umption	I _{DD}		-	1.97	-	mA


3-3BACKLIGHT

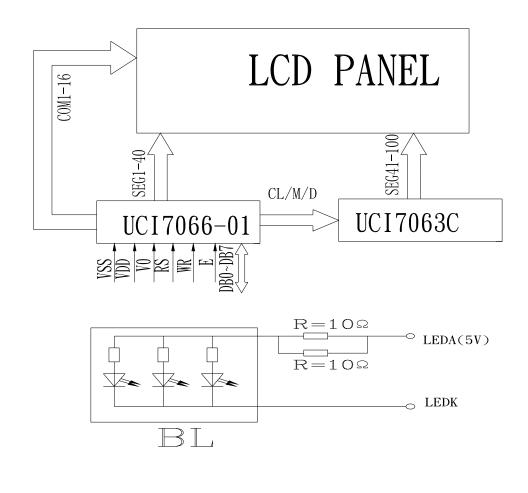
3-3-1. Absolute Maximum Ratings

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Current	lfm		-	-	56	mA
Reverse Voltage	VR	Ta = 25 °C	-	-	5	V
Power Dissipation	PD		-	-	216	mW

3-3-2. Electrical-optical Characteristics

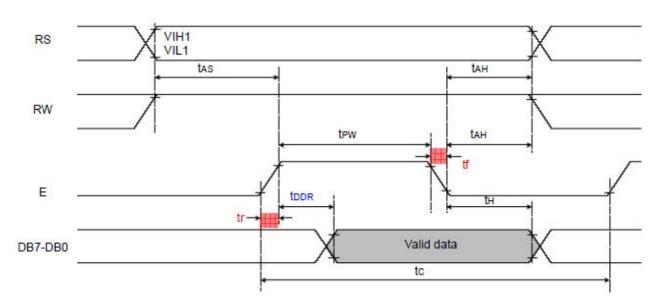
ltem	Symbol	Condition	Mi	n.	Ту	γp.	Ма	ax.	Unit
Forward Current	IF		-	-	3	6	4	5	mA
Average Luminous Intensity	Lv	Ta = 25 °C Vf=4.8V	30)0	4(00		-	cd/m ²
Color Coordinate		_	Х	Y	Х	Y	Х	Y	
			0.25	0.25	0.28	0.28	0.32	0.32	

The brightness is measured without LCD panel

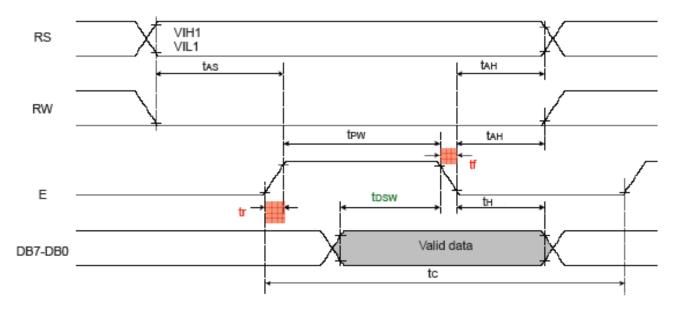

For operation above 25 °C,Thelfm&Pd must be derated , the current derating is -0.36*3mA/°C for DC drive and -0.86*3mA/°C for Pulse drive ,the Power dissipation is -0.75*3mW/°C.The product working current must not more than the 60% of the lfm or lfp according to the working temperature.

4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM

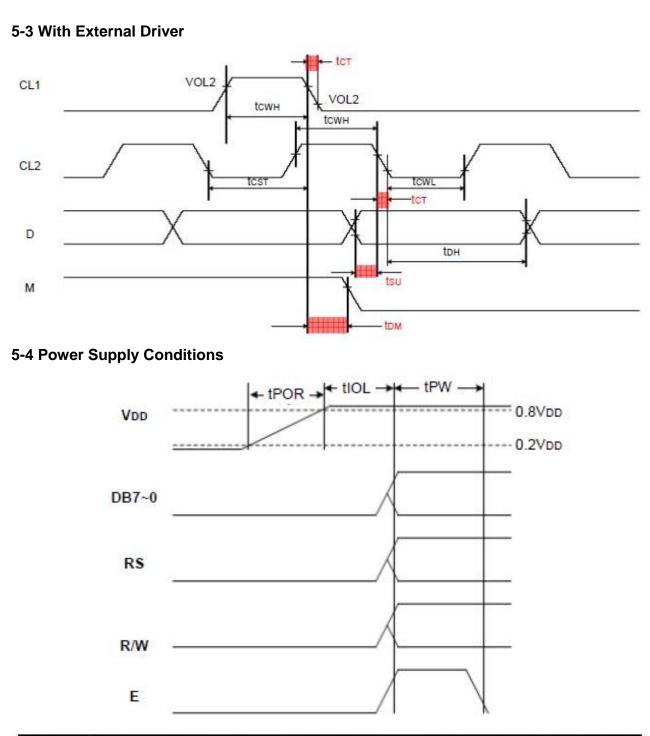
4-1INTERFACE PIN FUNCTION DESCRIPTION


PIN NO.	SYMBOL	FUNCIONS
1	VSS	Ground
2	VDD	Supply voltage for logical circuit
3	V0	Supply voltage for LCD driving
4	RS	A signal for selecting registers. 1: Data Register (for read and write) 0: Instruction Register (for write)
5	WR	A signal for selecting read or write actions.1: Read, 0: Write.
6	Е	A enable signal for reading or writing data.
7-14	DB0~DB7	8 Bit Data bus
15	LEDA	Backlight(+5.0V)
16	LEDK	Backlight(-)

4-2BLOCK DIAGRAM



5. TIMING CHARACTERISTICS


5-1 Reading data from UCI7066U to MPU

5-2 Writing data from MPU to UCI7066U

(6800 Write data to UCi7066c)

Symbol	Characteristics	Description	Min	Тур.	Max.	Unit
tPOR	Power Rise time	Power rise time that will trigger internal POR circuit	0.1		100	mS
tIOL	I/O Low time	The period that I/O is kept LOW	40	c		mS
tPW	Enable Pulse width	Please refer to the following	tables	83 S	6	22

5-5 Parameter

TA = 25°C, Vcc=4.5V~5V

Symbol	Characteristic	Test Condition	Min.	Typ.	Max.	Unit
Internal Cloc	k Operation	15 15	10 (1)	a	8. 8.	8
fosc	OSC Frequency	R=91KΩ	190	270	350	KHz
External Cloc	k Operation			0	~	
fex	External Frequency	-	125	270	410	KHz
	Duty Cycle	121	45	50	55	%
tR, tF	Rising/Falling Time	-	-	-	0.2	uS
Write Mode (I	MPU writes data to UCi7066)		1			
tc	Enable Cycle Time	Pin E	1200	-	-	nS
tpw	Enable Pulse Width	Pin E	140	17	-	nS
tr, tr	Rising/Falling Time	Pin E	-	j.	25	nS
tas	Address Setup Time	Pin: RS, RW, E	0	12	1	nS
tah	Address Hold Time	Pin: RS, RW, E	10	-	-	nS
tosw	Data Setup Time	Pin: DB7~DB0	40	872	10	nS
tн	Data Hold Time	Pin: DB7~DB0	10	-		nS
Read Mode (I	MPU reads data from UCi706	6)				
tc	Enable Cycle Time	Pin E	1200	-	-	nS
tpw	Enable Pulse Width	Pin E	140	875	-	nS
tR, tF	Rising/Falling Time	Pin E		4	25	nS
tas	Address Setup Time	Pin: RS, RW, E	0	875		nS
tan	Address Hold Time	Pin: RS, RW, E	10	-	-	nS
t DDR	Data Setup Time	Pin: DB7~DB0	8.00	-	100	nS
tн	Data Hold Time	Pin: DB7~DB0	10	12	-	nS
Interface Mod	le with LCD Driver (UCi7065)		W.		16 	12
tсwн	Clock Pulse Width, High	Pin: CL1, CL2	800	12	-	nS
tcwL	Clock Pulse Width, Low	Pin: CL1, CL2	800	-	-	nS
tcst	Clock Setup Time	Pin: CL1, CL2	500	722		nS
tsu	Data Setup Time	Pin: D	300	-	-	nS
tdh (Data Hold Time	Pin: D	300	12	1	nS
tом	M Delay Time	Pin: M	0	-	2000	nS

6.COMMAND LIST

#	Command	RS	R/W	D7	D6	D5	D4	D3	D2	D1	DO	Action
1	Clear Display	0	0	0	0	0	0	0	0	0	1	Clear the screen
2	Return Home	0	0	0	0	0	0	0	0	1	Ŧ	Move cursor to HOME
3	Set Entry Mode	0	0	0	0	0	0	0	1	I/D	S	I/D: Left / Right S: Shift OFF/ON
4	Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D: Display OFF / ON C: Cursor OFF / ON B: Blink OFF / ON
5	Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	1	1 1 1	S/C: Screen / Cursor R/L Right / Left
6	Set Function	0	0	0	0	1	DL	N	F	3	1	DL: 4-bit / 8-bit, N: 1-line / 2-line F: 5x8 / 5x11
7	Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	
8	Set DDRAM address	0	0	1	AC12	AC11	AC10	AC9	AC8	AC7	AC6	
9	Read Busy Flag and address	0	1	BF	AC19	AC18	AC17	AC16	AC15	AC14	AC13	
10	Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	DO	Write data to RAM
11	Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from RAM
	se southings on a second				For	\$8/\$9	Mode					******************************
12	Status Doad	1	1	0	0	0	0	0	0	0	0	Read status
12	2 Status Read		1	BF	AC19	AC18	AC17	AC16	AC15	AC14	AC13	

Note:

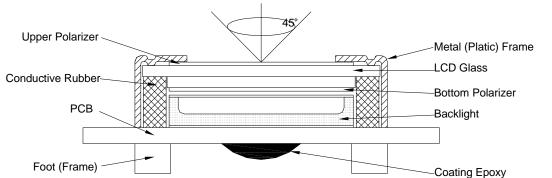
Ensure that UCi7066 is not in the BUSY state (BF = 0) before sending an instruction from the MPU to the UCi7066. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself.

7.CHARACTER GENERATOR ROM

Correspondence between Character Codes and Character Patterns (ROM Code: 0A)

No. 7066-01

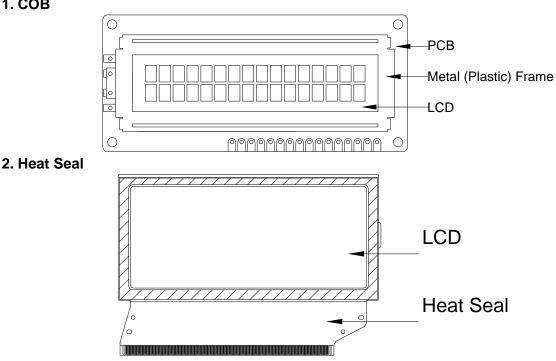
		onars	acter	coues	anu	Chara	acter	atter	ins (in	on c	oue.				10.10	00-0
Upper 4 bits Lower 4 bits	0000	0001	0010	0011	0100	0101	0110	01 <mark>1</mark> 1	1000	1001	1010	1011	1100	1101	1110	
0000																
0001											o	P				
0010											F	1				
0011							c.							1		
0100																
0101												Ħ				Ĺ
0110							ſ				7					
0111				P								Ŧ				T
1000				8			ŀ									5
1001				-								T				
1010											æ					
1011											-	11				
1100						Ŧ									ITTTT I	
1101																
1110																
1111																

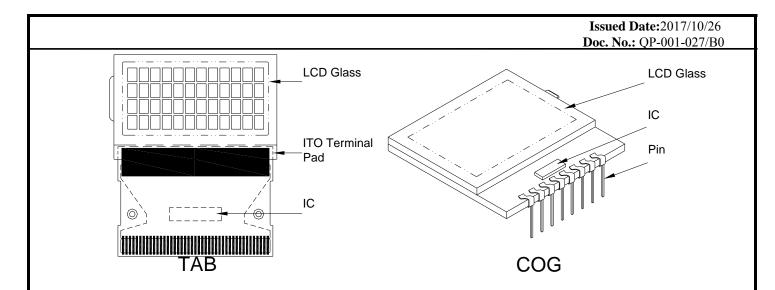

8. Polaroid

	Part no	HN1822MA
	structure	size
1	Release film	L=1000mm
2	Sticker	
3	TAC	¥=620mm
4	PVA	θp
5	TAC	↓
6	Sticker	
7	Reflective Film	*release film upwards; θ p= Polaroid absorb the shaft

	item	unit	spec value	notes
	length	mm	1000(±10)	
size	width	mm	620(±10)	
	effective thickness	μm	280±10%	
thickness	Release film	μm	$38\pm10\%$	
	To glasses	gf/25mm	Above 500g	
Strip Force	Release film	gf/25mm	Under 20g	
	Monomer transmittance	%	42.0±1.5	The original panel data
	Rectangular transmittance	%	≤2.0	The original panel data
Transmittance	380nm transmittance	%	≤1.0	
	Cutting Angle	0	90±1.0	
Angle	Absorption of shaft Angle	0	±2.0	
	BENDING	mm	$\leq \pm 50$	
	L	NBS	65.0 ± 2.0	The original panel data
Hue	а	NBS	-1.97±2.0	The original panel data
	b	NBS	2.98±2.0	The original panel data
degree of	f polarization	%	≥99.0	The original panel data
apparent d	efect (above Diameter 150µm)		≤13/ pcs	
80 °C	*500Hr (post- testing)Transmi Monomer transmittanc			
60℃*909	%RH*500Hr Hue change valu No separation, no foam,	e≪3.0		

9. QUALITY SPECIFICATIONS


- 9-1. LCM Appearance and Electric inspection Condition
 - 1. Inspection will be done by placing LCM 30cm away from inspector's eyeballs under normal illumination.


2. View Angle: with in 45° around perpendicular line.

9-2. Definition

1. COB

3. TAB and COG

9-3. Sampling Plan and Acceptance

1.Sampling Plan

MIL - STD - 105E (\parallel) ordinary single inspection is used.

2.Acceptance

Major defect:AQL = 0.65%Minor defect:AQL = 1.5%

9-4. Criteria

1.COB

Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2.SMT

Defect	Inspection Item	Inspection Standa	ards
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing , extra, wrong component or wrong orientation		Reject
Minor	Component position shift x component soldering pad x y	X < 3/4Z Y > 1/3D	Reject Reject
Minor	Component tilt component D soldering pad	Y > 1/3D	Reject
Minor	Insufficient solder component θ PAD ← PCB	<i>θ</i> ≤ 20°	Reject

Metal (Plast	tic) Frame			Doc. No.: QP-00
Defect	Inspection Item	lı	nspection Standa	rds
Major	Crack / breakage	Any	where	Reject
		W	L	Acceptable of Scratch
		w<0.1mm	Any	Ignore
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2
Minor	Frame Scratch	0.2 <u><</u> w<0.3mm	L <u><</u> 3.0mm	1
		w <u>></u> 0.3mm	Any	0
		with distance g	e criteria applicable reater than 5mm. on the back sid ignored.	
				Dents / Pricks
		Φ <u><</u>	2	
	Frame Dent , Prick	1.0<	1	
Minor	$\Phi = \frac{L + W}{2}$	1.5r	0	
	2	/ pricks with dis	to any two dent 5mm ide of frame (no	
Minor	Frame Deformation	Excee	d the dimension of	drawing
Minor	Metal Frame Oxidation		Any rust	

4. Flexible Film Connector (FFC)

Defect	Insp	ection Item	Inspection Standa	rds		
Minor	Tilted soldering		Tilted soldering		Within the angle +5°	Acceptable
Minor	Uneven s	older joint /bump		Reject		
			Expose the conductive line	Reject		
Minor	Hole	$\Phi = \frac{L + W}{2}$	⊕> 1.0mm	Reject		
Minor	Y- <u>*</u> -	sition shift →Z←↓ D	Y > 1/3D	Reject		
			X > 1/2Z	Reject		

5. Screw

Defect	Inspection Item	Inspection Standards	
Major	Screw missing/loosen		Reject
Minor	Screw oxidation	Any rust	Reject
Minor	Screw deformation	Difficult to accept screw driver	Reject

6. Heatseal < TCP < FPC

Defect	Inspection Item	Inspection Standards	
Major	Scratch expose conductive layer		Reject
Minor	HS Hole $\Phi = \frac{L + W}{2}$	Φ > 0.5mm	Reject
Major	Adhesion strength	Less than the specification	Reject
Minor	Position shift $Y \xrightarrow{- \frac{1}{2}} \xrightarrow{- \frac{1}{2}$	Y > 1/3D	Reject
NII IOI		X > 1/2Z	Reject
Major	Conductive line break		Reject

7. LED Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards					
		Acceptable number of units					
	LED dirty, prick	⊕ <u><</u> 0.10mm	Ignore				
		0.10<⊕ <u><</u> 0.15mm	2				
Minor		0.15<⊕ <u><</u> 0.2mm	1				
		⊕>0.2mm	0				
		The distance between any two spots should be \geq Any spot/dot/void outside of viewing area is acce					
Minor	Protective film tilt	Not fully cover LCD	Reject				
Major	COG coating	Not fully cover ITO circuit	Reject				

8. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

Defect	Insp	ect Item	Inspection Standards							
		Olasa Osratak	W W <u><</u> 0.03			0			V>0.05	
Minor	Linear Defect	*Glass Scratch *Polarizer Scratch	L	 L<5		L<3			Any	
		* Fiber and Linear	ACC. NO.	1					Reject	
		material	Note			-		ne width of		
Minor	Black Spot and Polarizer Pricked	* Foreign materia		Φ <u><</u> (0.1<⊕ <u><</u> (0.15	0.15<⊕ <u><</u> 0	.2	Φ >0.2
		between glass and polarizer or glass		3EA / 2 100mm ²				1		0
		and glass * Polarizer hole or protuberance by external force	Note	Φ is the average diameter of the defect. Distance between two defects >10mm.						
	White Spot and Bubble in polarizer	* Unobvious	-	⊕ <u><</u> 0.3			0.3	0.3<⊕ <u><</u> 0.5 0.		5< Φ
Minor		transparant foreign material between	NO.	3EA / 100mm ²			1		0	
		glass and glass or glass and polarizer * Air protuberance between polarizer and glass	Note	Φ is the average diameter of the defect. Distance between two defects >10mm.						
Minor	Segment Defect		Φ	Ф <u><</u> 0.	.10	0.10<⊕ <u><</u> 0.		.20 0.20<0 <u><</u> 0.25		Ф >0
			ACC. NO.	3EA 100m	v / nm²	2		1		0
				W is more than 1/2 segment width Rej				Reje		
			Note	$\Phi = \frac{L + W}{2}$ Distance between two defect is 10mm						
Minor	Protuberant Segment	Φ = (L + W) / 2	Φ	Φ <u><</u> 0.10 0.		0.10<⊕ <u><</u> 0.20		0.20<⊕ <u><</u> 0.25		Ф>0
			W	Glu	е	W <u><</u> 1/2 S W <u><</u> 0.2		W <u>≤</u> 1/2 Seg W <u>≤</u> 0.2		Igno
			ACC. NO.	3EA / 2 100mm ²			1		0	
Minor	Assembly Mis-alignment		1. Segment							
			E B-			_				1.0mm \<0.25
			Juc							eptabl
		- A Max	2. Dot Matrix							
			Deformation>2° Reject							
Minor	Stain on LCD Panel Surface		Accept when stains can be wiped lightly with a soft clot or a similar one. Otherwise, judged according to th above items: "Black spot" and "White Spot"							

10. RELIABILITY

No	Item	Condition	Quantity	Criteria	
1	High Temperature Operating	50℃, 96Hrs	2	GB/T2423.2 -2008	
2	Low Temperature Operating	0℃, 96Hrs	2	GB/T2423.1 -2008	
3	High Humidity	50°C, 90%RH, 96Hrs	2	GB/T2423.3 -2006	
4	High Temperature Storage	60℃, 96Hrs	2	GB/T2423.2 -2008	
5	Low Temperature Storage	-10℃, 96Hrs	2	GB/T2423.1 -2008	
6	Thermal Cycling Test	0°C, 60min~50°C, 60min, 20 cycles.	2	GB/T2423.22 -2012	
7	Packing vibration	Frequency range:10Hz~50Hz Acceleration of gravity:5G X,Y,Z 30 min for each direction.	2	GB/T5170.14 -2009	
8	Electrical Static Discharge	Air: \pm 8KV 150pF/330 Ω 5 times	2	GB/T17626.2 -2006	
	Electrical Static Discilarge	Contact: ± 4 KV 150pF/330 Ω 5 times	<i>ــــــــــــــــــــــــــــــــــــ</i>		
9	Drop Test (Packaged)	Height:80 cm,1 corner, 3 edges, 6 surfaces.	2	GB/T2423.8 -1995	

Note:1) Above conditions are suitable for our company standard products. 2) For restrict products, the test conditions listed as above must be revised.

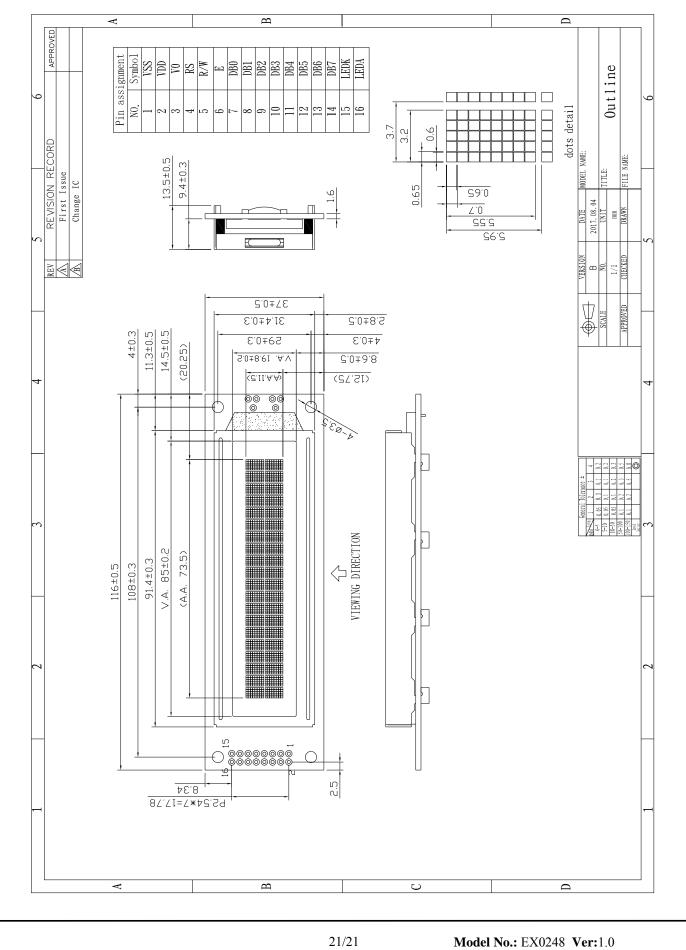
11. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers which easily getdamaged since the Module is fixed by utilizing fitting holesin the printed circuit board. Extreme care should be taken when handling the LCD Modules.

- (2) Caution of LCD handling & cleaning
 - When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly. Isopropyl alcohol
 - Isopropyl alco - Ethyl alcohol
 - Trichlorotrifloro thane
 - Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:
 - Water
 - Ketone
 - Aromatics
- (3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. Andground your body, Work/assembly table. And assembly equipment toprotect against staticelectricity.


- (4) Packaging
 - Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
 - To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.
- (5) Caution for operation
 - It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
 - Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.
 - If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
 - A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
 - Usage under the relative condition of 40°C, 50%RH or less is required.

(6) Storage

- In the case of storing for a long period of time (for instance.) For years) for the purpose or replacement use, The following ways are recommended.
 - Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)
- (7) Safety
 - It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol. Which should be burned up later.
 - When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.
- (8) Other
 - After the product shipped, any product quality issues must be feedback within three months, otherwise, we will not be responsible for the subsequent or consequential events.

12. OUTLINE DIMENSION

NOTE :The dimension with"()" is reference

