

PRODUCT SPECIFICATION

16*4 Characters COB LCD MODULE MODEL: LT-1604A-512 Ver:1.0

< \diamond > Finally Specification

CUSTOMER'S APPROVAL								
CUSTOMER :								
SIG	NATURE:	DATE:						

APPROVED	PM	PD	PREPARED
BY	REVIEWD	REVIEWD	Ву

Prepared By: LEADER TIME SRL VIA MONS. PROSDOCIMI, 27 36042 BREGANZE (VI)

• This specification is subject to change without notice. Please contact LT or its representative before designing your product based on this specification.

Revision Status Page Modified By Version **Revise Date** Content **VER 1.0** 2018-05-28 **First Issued**

Table of Contents

No. Contents

1. FEATURES4
2. MECHANICAL SPECIFICATIONS4
3. ELECTRICAL SPECIFICATIONS
4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM6
5. TIMING CHARACTERISTICS
6. COMMAND LIST
7. INSTRUCTION SET9
8.CHARACTER GENERATOR ROM11
9. QUALITY SPECIFICATIONS
10. RELIABILITY17
11. HANDLING PRECAUTION
12. OUTLINE DIMENSION

1. FEATURES

The features of LCD are showed as follows

* Display mode : STN/Gray/Transflective/Positive/Anti-UV

* Controller IC : AIP31066W3(English and Russian)

- * Display format : 16X4Characters
- * Interface : 4 Bit or 8 Bit MPU
- * Driving Method : 1/16Duty, 1/5Bias
- * Viewing Direction : 12 O'clock
- * Backlight : 3 LED Side Blue
- *Sample NO.

2. MECHANICAL SPECIFICATIONS

ltem	Specification	Unit
Module Size	87(W) x60(H) x14.5MAX(D)	mm
Viewing Area	61.8 (W) x 25.2(H)	mm
Activity Display Area	56.21(W)x20.81(H)	mm
Character Font	5x8 Dots	-
Character Size	2.96(W)x4.76(H)	mm
Character Pitch	3.55 (W) x5.35(H)	mm
Dot Size	0.56(W)x0.56(H)	mm

: C1604A9SKB7B-B2_01/20180515

3. ELECTRICAL SPECIFICATIONS

3-1 ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)									
Item	Symbol	Min	Max	Unit					
Supply Voltage For Logic	Vdd	-0.3	7.0	V					
Supply Voltage For LCD Drive	V _{LCD}	Vdd-10	VDD+0.3	V					
Input Voltage	Vin	-0.3	VDD+0.3	V					
Operating Temp.	Тор	-20	+70	°C					
Storage Temp.	Tst	-30	+80	°C					

*. NOTE: The response time will be extremely slow when the operating temperature is around -10 $^{\circ}$ C, and the back ground will become darker at high temperature operating.

3-2 ELECTRICAL CHARACTERISTICS

lterr	1	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic supply	Voltage	Vdd – Vss		-	5	-	V
LCD Di	LCD Drive			4.1	4.2	4.4	V
Input Voltage	nput Voltage "H" Level		Ta = 25 °C	0.7 Vdd	-	Vdd	V
	"L" Level	V _{IL}	$V_{DD}=5V\pm10\%$	-0.3	-	0.6	V
Frame Frequency		f _{FLM}		-	75	-	Hz
Current Cons	sumption	I _{DD}		-	1.4	-	mA

3-3 BACKLIGHT

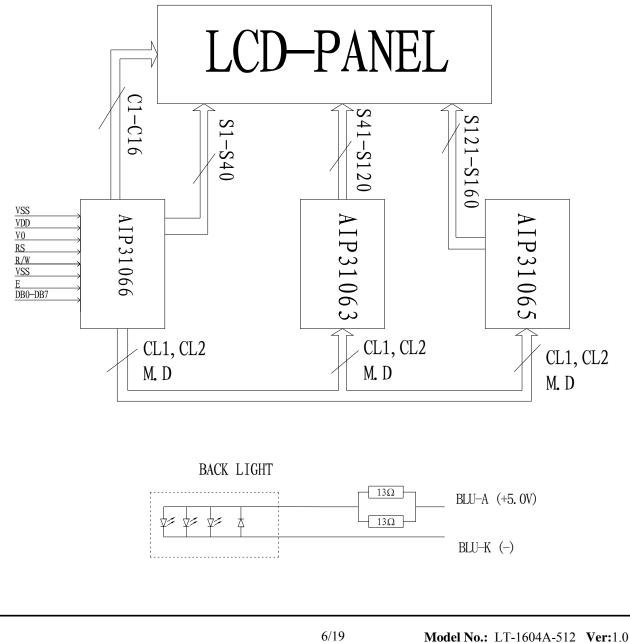
3-3-1. Absolute Maximum Ratings

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Current	IF		-	-	75	mA
Power Dissipation	PD	Ta = 25 °C	-	-	232.5	mW
Reverse Current	IR		-	-	15	uA

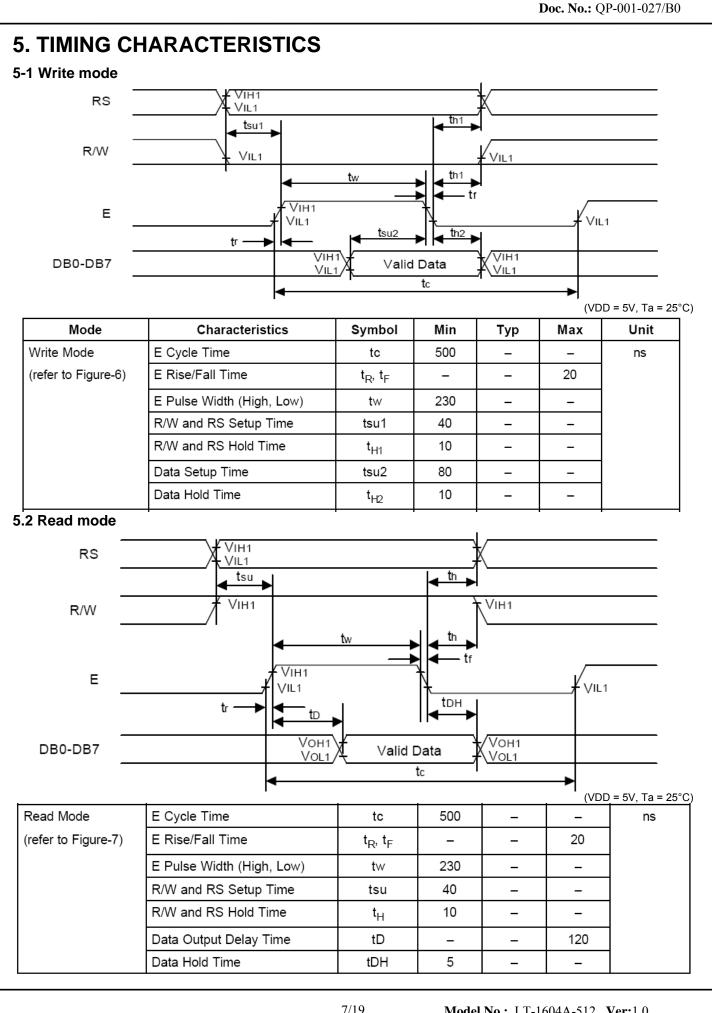
3-3-2. Electrical-optical Characteristics

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	VF		2.9	3.1	3.3	V
Average Luminous Intensity	lv	lf=45mA Ta = 25 ℃	100	-	-	cd/m ²
Peak wave length	λp	1a - 25 C	465	470	475	nm

The brightness is measured without LCD panel


For operation above 25 °C, The lfm & Pd must be derated , the current derating is -0.36mA/ °C for DC drive and -0.86mA/ °C for Pulse drive ,the Power dissipation is -0.75mW/ °C. The product working current must not more than the 60% of the lfm or Ifp according to the working temperature.

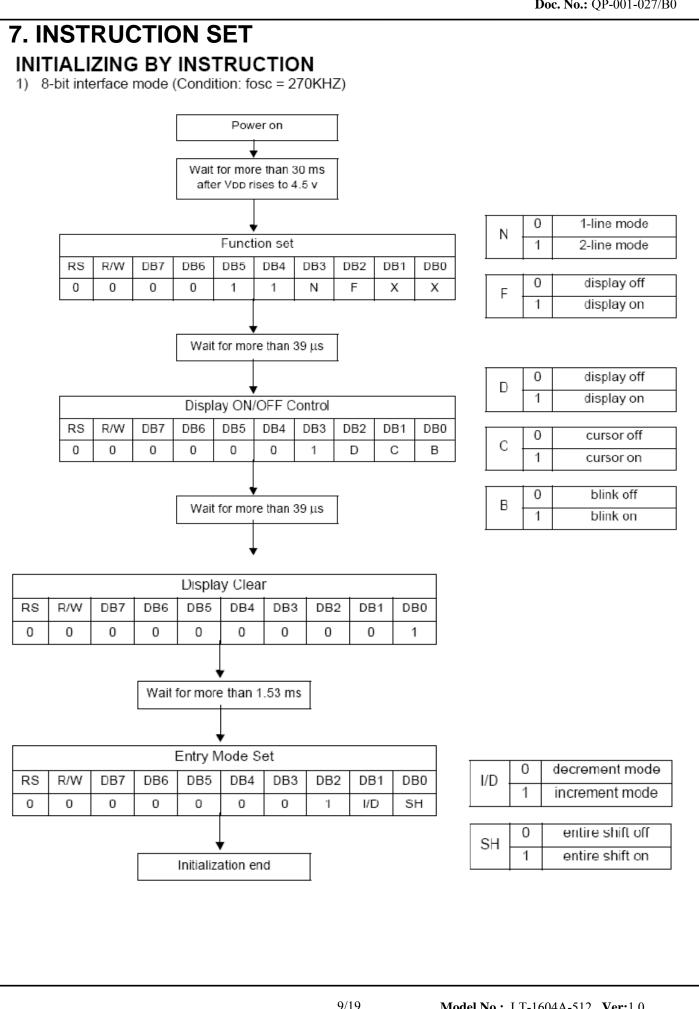
4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM

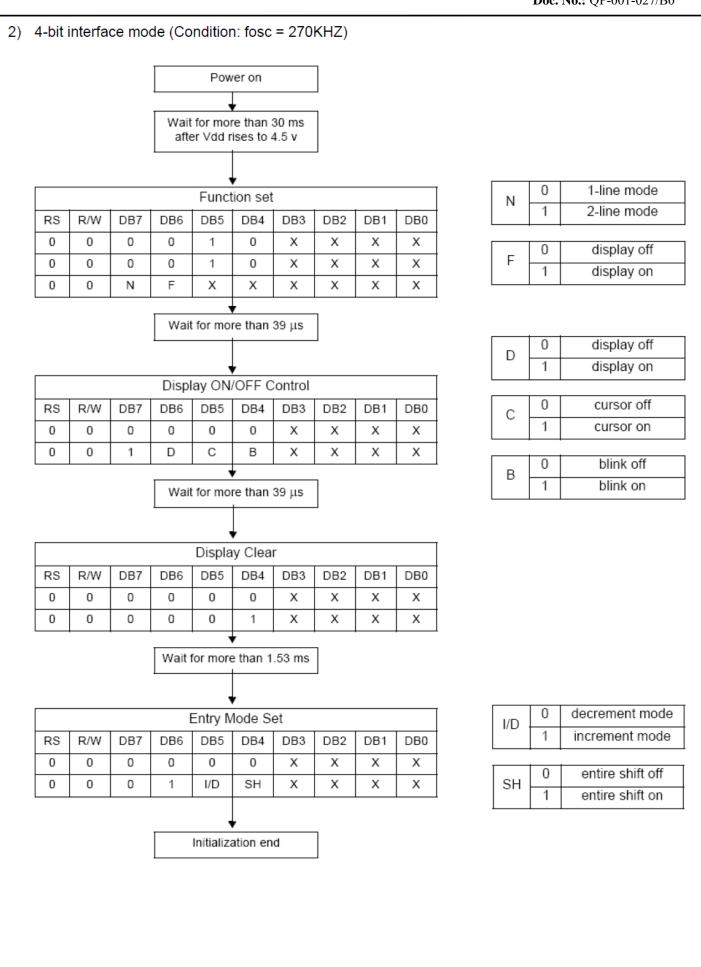

4-1 INTERFACE PIN FUNCTION DESCRIPTION

PIN NO.	SYMBOL	FUNCTIONS
1	VSS	Ground
2	VDD	Supply voltage for logical circuit
3	V0	Supply voltage for LCD driving
4	RS	A signal for selecting registers.
5	R/W	A signal for selecting read or write actions.1: Read, 0: Write.
6	Е	Read / Write enable signal
7-14	DB0~DB7	Data Bus
15	BLU-A	Backlight (5.0V)
16	BLU-K	Backlight (-)

4-2 BLOCK DIAGRAM

Issued Date:2018-05-28

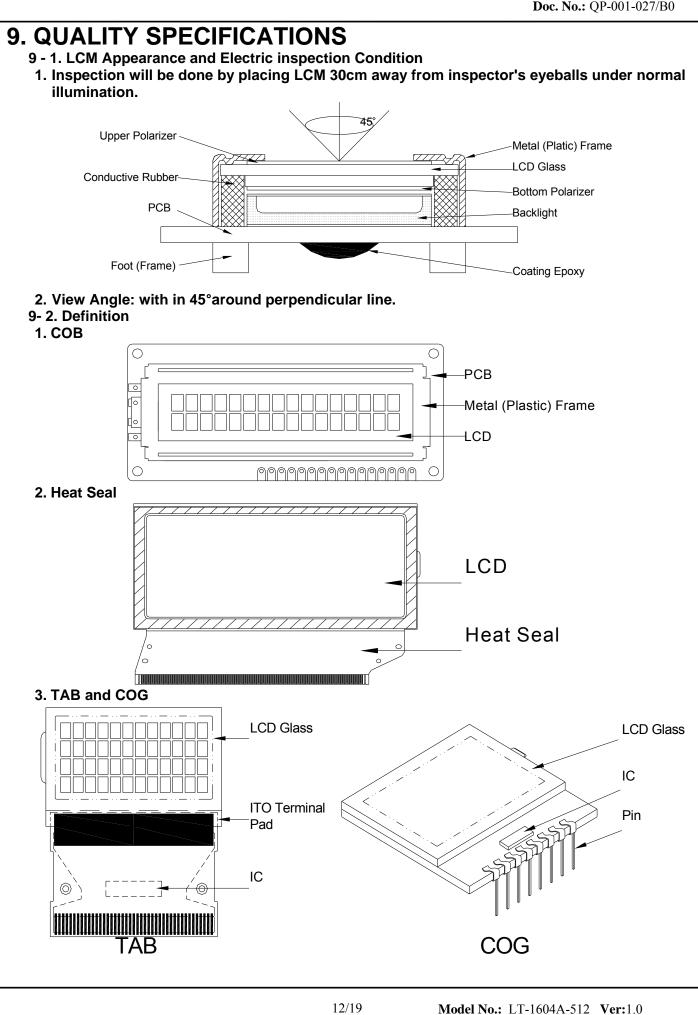



Model No.: LT-1604A-512 Ver:1.0

6. COMMAND LIST 6-1 Instruction Table

Instruction				Ins	tructi	on Co	ode				Description	Execution
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Instruction Code	time(fsoc=270)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC.	1.53ms
Retum Home	0	0	0	0	0	0	0	0	1	х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and make shift of entire display enable.	39µs
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	39µs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	x	x	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	39µs
Function Set	0	0	0	0	1	DL	N	F	х	х	Set interface data length (DL : 4-bit/8-bit), numbers of display line (N : 1-line/2-line), display font type (F : 5 X 8 dots/ 5 X 11 dots)	39µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39µs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0µs
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43µs

NOTE: When an MPU program with checking the Busy Flag (DB7) is made, it must be necessary 1/2 fosc is necessary for executing the next instruction by the falling edge of the 'E' signal after the Busy Flag (DB7) goes to "LOW".



Issued Date:2018-05-28

Doc. No.: QP-001	1-027/B0
------------------	----------

8. C⊦	IAR	AC	TER	GE	INE	RA	ΓOR	RC)M							
Upper 4bit Lower 4bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	гнин	HLLL	HLLH	HLHL	нгнн	HHLL	ннгн	нннг	нннн
LLLL	CG RAM (1)															
LLLH	(2)															
LLHL	(3)															
LLHH	(4)															
LHLL	(5)															
LHLH	(6)															
LHHL	(7)															
гннн	(8)															
HLLL	(1)															
HLLH	(2)															
IILIIL	(3)															
нгнн	(4)															
HHLL	(5)															
HHLH	(6)															
HHHL	(7)															
нннн	(8)															

Model No.: LT-1604A-512 Ver:1.0

9-3. Sampling Plan and Acceptance

1.Sampling Plan

MIL - STD - 105E (II) ordinary single inspection is used.

2.Acceptance

Major defect:AQL = 0.65%Minor defect:AQL = 1.5%

9-4. Criteria

1.000			
Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2.SMT

Defect	Inspection Item	Inspection Standa	ards
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing , extra, wrong component or wrong orientation		Reject
Minor	Component position shift x component soldering pad x \rightarrow	X < 3/4Z Y > 1/3D	Reject
Minor	Component tilt component soldering pad	Y > 1/3D	Reject
Minor	Insufficient solder component θ PAD PCB	θ <u><</u> 20°	Reject

	stic) Frame			I -		
Defect	Inspection Item	In	Inspection Standard			
Major	Crack / breakage	Any	where	Reject		
		W	L	Acceptable of Scratch		
		w<0.1mm	Any	Ignore		
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2		
Minor	Frame Scratch	0.2 <u><</u> w<0.3mm	L <u><</u> 3.0mm	1		
		w <u>></u> 0.3mm	Any	0		
		with distance gre	on the back sid			
				Acceptable o Dents / Pricks		
		Φ <u><</u> 1	2			
	Frame Dent , Prick	1.0<Φ	1			
Minor	$\Phi = \frac{L + W}{2}$	1.5n	0			
	2	Note : 1. Above criteria applicable to any two de / pricks with distance greater than 5mm 2. Dent / prick on the back side of frame (visible) can be ignored				
		2. Dent / pri	ick on the back s	5mm		
Minor	Frame Deformation	2. Dent / pri visible) can be ig	ick on the back s	5mm difframe (n		

4. Flexible Film Connector (FFC)

Defect	Insp	ection Item	Inspection Standa	rds
Minor	Tilted soldering Within the angle +5°		Acceptable	
Minor	Uneven s	older joint /bump		Reject
			Expose the conductive line	Reject
Minor	Hole	$\Phi = \frac{L + W}{2}$	Φ > 1.0mm	Reject
Minor	×- <u>*</u> -	sition shift → ^{,Z} ← ↓ □	Y > 1/3D	Reject
Minor			X > 1/2Z	Reject

5. Screw

Defect Inspection Item		Inspection Standards				
Major	Screw missing/loosen		Reject			
Minor	Screw oxidation	Any rust	Reject			
Minor	Screw deformation	Difficult to accept screw driver	Reject			

6. Heatseal 、 TCP 、 FPC

Defect	Inspection Item	Inspection Standards		
Major	Scratch expose conductive layer		Reject	
Minor	HS Hole $\Phi = \frac{L + W}{2}$	Φ> 0.5mm	Reject	
Major	Adhesion strength	Less than the specification	Reject	
Minor	Position shift $Y \xrightarrow{-\frac{1}{2}} \xrightarrow{-\frac{1}{2}$	Y > 1/3D	Reject	
Minor		X > 1/2Z	Reject	
Major	Conductive line break		Reject	

7. LED Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards					
		Acceptable number of units					
		Φ <u><</u> 0.10mm	ignore				
		0.10<Φ <u><</u> 0.15mm	2				
Minor	LED dirty, prick	0.15<Φ <u><</u> 0.2mm	1				
		Φ>0.2mm	0				
		The distance between any two spots should be ≥ Any spot/dot/void outside of viewing area is acce					
Minor	Protective film tilt	Not fully cover LCD					
Major	COG coating	Not fully cover ITO circuit Re					

8. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

Defect	Insp		Inspection Standards							
		* Glass Scratch	W		W <u><</u>	0.03	0	.03 <w<u><0.0</w<u>	5 V	V>0.05
		* Polarizer Scratch	L	L<5		<5	L<3			Any
Minor	Linear Defect	* Fiber and Linear	ACC. NO.	1			1		Reject	
		material	Note	L is th	ie ler	-		he width of		efect
		* Foreign material		Φ <u><</u> (0.1<Φ <u><</u> ().15	0.15<Ф <u><</u> 0	.2	Φ>0.2
	Black Spot and	between glass and polarizer or glass		3E/ 100n	A / nm ²	2		1		0
Minor	Polarizer Pricked	and glass * Polarizer hole or protuberance by external force	Note	Φ is the average diameter of the defect. Distance between two defects > 10mm.						
		* Unobvious	-		Φ <u><</u> ().3	0.3	З<Ф <u><</u> 0.5	0	.5<Φ
	White Spot	transparent foreign material between		3EA	4/10	00mm²		1		0
Minor	and Bubble in polarizer	glass and glass or glass and polarizer * Air protuberance between polarizer and glass				ne average diameter of the defect. Ice between two defects > 10mm.				-
	Segment Defect		Φ	Φ <u><</u> 0	.10	0.10<Φ <u><</u> 0.20		0 0.20<Φ <u><</u> 0.25		Φ>0.2
			ACC. NO.	3EA 100m	۸ / ۱m²	2		1		0
Minor				W is more than 1/2 seg		segm	ent width		Reje	
			Note	$\Phi = \frac{L + W}{2}$ Distance between two defect is 10mm						
			Φ	Φ <u><</u> 0.10		0.10<Φ <u><</u> 0.20				Φ>0.2
	Protuberant	w K	W	Glu	ue W <u><</u> 1/2 S W <u><</u> 0.2					Ignor
Minor	Segment	Φ = (L + W) / 2	ACC. NO.	3EA 100m	א / חm²	2		1		0
			1. Seg		· · · ·					
			E				0.4 <b<u><1.0mm</b<u>			1.0mm <0.25
Minor	Assembly Mis-alignment									eptable
		2ª Max	2. Dot	Matrix			<u> </u>			
								Reje		
Minor	Stain on LCD Panel Surface		ora	similar	one	e. Otherw	vise,	ed lightly w judged ace Vhite Spot"	cordin	

10. RELIABILITY

No	Item	Condition	Quantity	Criteria
1	High Temperature Operating	70℃, 96Hrs	2	GB/T2423.2 -2008
2	Low Temperature Operating	-20°C, 96Hrs	2	GB/T2423.1 -2008
3	High Humidity	60°C, 90%RH, 96Hrs	2	GB/T2423.3 -2006
4	High Temperature Storage	80°C, 96Hrs	2	GB/T2423.2 -2008
5	Low Temperature Storage	-30°C, 96Hrs	2	GB/T2423.1 -2008
6	Thermal Cycling Test	-20°C, 60min~70°C, 60min, 20 cycles.	2	GB/T2423.2 2 -2012
7	Packing vibration	Frequency range:10Hz~50Hz Acceleration of gravity:5G X,Y,Z 30 min for each direction.	2	GB/T5170.1 4 -2009
8	Electrical Static Discharge	Air: \pm 8KV 150pF/330 Ω 5 times	2	GB/T17626. 2
0	Electrical Static Discillarge	Contact: ± 4 KV 150pF/330 Ω 5 times	2	-2006
9	Drop Test (Packaged)	Height:80 cm,1 corner, 3 edges, 6 surfaces.	2	GB/T2423.8 -1995

Note: 1) Above conditions are suitable for our company standard products.

2) For restrict products, the test conditions listed as above must be revised.

11. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers, which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.

- (2) Caution of LCD handling & cleaning
 - When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly. Isopropyl alcohol
 - Isopropyi alco
 - Ethyl alcohol
 - Tricolor trifler thane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:

- Water
- Kenton

- Aromatics

(3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.

- (4) Packaging
 - Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
 - To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.
- (5) Caution for operation
 - It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
 - Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's .which will come back in the specified operating temperature range.
 - If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
 - -A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
 - Usage under the relative condition of 40°C, 50%RH or less is required.

(6) Storage

- In the case of storing for a long period of time, (For years) for the purpose or replacement use, the following ways are recommended.
 - Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)
- (7) Safety

- It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol. Which should be burned up later.

When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

- please wash it off well
- (8) Other
 - After the product shipped, any product quality issues must be feedback within three months, otherwise, we will not be responsible for the subsequent or consequential events.

12. OUTLINE DIMENSION NOTE: The dimension with"()" is reference A В C D APPROVED DOTS DETAIL SCALE 4:1 Outline BLU-K BLU_A VSS PIN Assignment R/W DB3 DB4 DB5 UD DB0 DB1 DB2 DB6 V0 RS ш DB7 12 13 14 15 16N0. 10 Ξ REVISION RECORD -0.60 -2.96--3.55-MODEL N TITLE: First 2018.04.20 Ш 9 99.0 -09'0 C REV п 92.1 5 ~ U U -+10±0.3--65.6-♥ \ominus М A 4-PTH02.5-Ø 1.8 (56.21A.A)- $-61.B\pm0.2(V.A)$ - 69.3 ± 0.3 - 83 ± 0.2 - 87 ± 0.5 -P2.54X15=38.1-16-PTHø1 φ G 10±0.3--(A.V)S.O±S.∂S-—(A.A18.OS)— -37.5±0.3--5.0±6∂--G.0±0ð-В D A \mathcal{O}

19/19

Model No.: LT-1604A-512 Ver:1.0